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Abstract. We study the effect of dipolar interactions on a magnetic striped monolayer with a microscopic
unit cell of square symmetry, and of size (Nx×Ny) spins. Even if the aspect ratio r = Nx/Ny is very large,
an in-plane shape anisotropy is always negligible, except if Ny is fairly small (Ny < 40). In-plane domains
are not possible, except for values of the dipolar coupling larger than the domain wall energy.

PACS. 75.70.-i Magnetic films and multilayers – 75.70.Ak Magnetic properties of monolayers and thin
films – 75.70.Kw Domain structure (including magnetic bubbles)

1 Introduction

An important and well known feature of magnetic dipole-
dipole interactions is that, in spite of their weakness with
respect to exchange coupling, they play an important role
in magnetic systems [1]. In fact, the long range character of
the magnetostatic interactions is relevant for determining
both the ground state of the system [2] and the excitation
spectrum [3]; perhaps, the most striking consequence of
dipolar interaction is the breaking of a bulk sample in
several magnetic domains.

The peculiarity of dipolar interactions in three dimen-
sions is elucidated by the fact that a shape anisotropy is
always present, independently of the size of the sample: as
a consequence of this, it has no meaning to speak about
an “infinite sample” without specifying its limiting shape.
For example, for the slab geometry (see Fig. 1b), the de-
magnetizing factors are 0 in the x, y directions and 1 in
the z one, perpendicular to the slab. Thus, the in-plane
collinear state has a lower energy than the perpendicular
collinear one, whose surface energy density turns out to
be proportional to the thickness of the slab, and therefore
the shape anisotropy per spin of a slab is a constant and
doesn’t depend on its thickness Nz!

In genuine two dimensional magnetic systems, like
magnetic films of atomic thickness (Fe, Co, Ni, Gd) grown
on nonmagnetic substrates (Au, Ag, Cu, . . . ), the situa-
tion is quite different: the shape anisotropy due to mag-
netic dipole-dipole interactions favours an in-plane mag-
netization without establishing any preferential direction
within the film [4,5], and the magnetization direction of
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Fig. 1. (a) Striped monolayer of size Nx × Ny. (b) Three-
dimensional slab of size Nx ×Ny ×Nz (with Nz � Nx, Ny).

a collinear configuration is determined by the competi-
tion with possible easy-axis anisotropies generated by the
breaking of the translational invariance in the growth di-
rection and which may favour a perpendicular state. For
in-plane magnetization, a monodomain configuration is
energetically favoured; for perpendicular magnetization,
the system prefers to break into domains [6,7], however
weak the dipolar interaction may be.

Recently, two-dimensional mesoscopic structures [8]
have attracted attention for their potential technological
applications. They are characterized (see Fig. 1a) by a
“small” lateral dimension in one direction (Ny � Nx:
magnetic wires) or in both directions (magnetic dots).
Such structures will be called striped monolayers in the
following, and Nx, Ny will be allowed to assume any value.



476 The European Physical Journal B

The aim of the present paper is to elucidate the role
played by magnetic dipole-dipole interactions in such sys-
tems, provided that the magnetization lies in the plane of
the stripe and the microscopic unit cell has square symme-
try, and to ascertain whether the results valid for a slab
apply analogously, namely: (i) the presence of a strong
shape anisotropy favouring the x direction if Nx � Ny,
and (ii) the existence of domains, if some in-plane mag-
netocrystalline anisotropy forces the magnetization along
the y direction. As we will show, neither of the previ-
ous points holds. In contrast, we find that (i) even for a
stripe with an infinite aspect ratio (Nx/Ny → ∞), the
shape anisotropy per spin vanishes upon increasing Ny,
and (ii) in-plane domain structures can appear only for
very large values of the dipolar interaction Ω.

2 Shape anisotropy of a striped monolayer

Let us start by writing down the dipolar energy for an
in-plane collinear ground state:

Edip =
Ω

2

∑
n,m

1

r3
nm

[
1− 3

(S · rnm)2

r2
nm

]
, (1)

where the distance rnm = |n−m| (with n 6= m) is mea-
sured in units of the square lattice constant.

The shape anisotropy is determined solely by the
anisotropic part of Edip (the second term in square brack-
ets), which becomes, if S = (cos θ, sin θ) and up to a con-
stant:

Edip = −3Ω cos2 θ ·
1

2

∑
n,m

(x2
nm − y

2
nm)

r5
nm

≡ −3Ω cos2 θ · S, (2)

where the “cross” term of the form
∑

n,m(xnmynm/r
5
nm)

vanishes if the system has at least one symmetry axis (a
rectangular monolayer has two).

The previous expression vanishes for an infinite two
dimensional monolayer, or for any square-shaped system
(Nx = Ny), provided that the symmetry of the micro-
scopic unit cell is square. For a rectangle with Nx > Ny,
a couple of points (n,m) will generally correspond to a
value |xnm| > |ynm|, so that the summation S will have a
strictly positive value, Edip will be minimal for θ = 0 and
the magnetization will be oriented along the x axis.

The relevant quantity is the dipolar energy per spin:
εdip = Edip/NxNy, and we are interested in analyzing the
dependence of εdip on Nx and Ny. For Ny = 1, in the limit
of an infinite chain of spins, it is immediately found that

εdip(Nx =∞, Ny = 1) = −3Ω cos2 θ ·
1

2

∑
n6=0

1

n3

≡ −3Ω cos2 θ · ζ(3), (3)

where ζ(3) = 1.2021 is the Riemann’s zeta function [9].
The competition between the dipolar contribution

(3ζ(3)Ω) and possible in-plane anisotropies favouring the

y axis, determines the actual direction of the magnetiza-
tion. In the following, we will evaluate εdip in a continuum
approximation, for any value of Nx, Ny.

The exact definition of S is:

S ≡
1

2

Nx∑
l,l′=1

Ny∑
m,m′=1

(l − l′)2 − (m−m′)2

[(l − l′)2 + (m−m′)2]
5/2

with (l,m) 6= (l′,m′). (4)

It is useful to introduce the new integer variables: x =
(l− l′), with −(Nx−1) ≤ x ≤ (Nx−1) and y = (m−m′),
with −(Ny − 1) ≤ y ≤ (Ny − 1). S now writes as a sum
on solely two indices:

S =
1

2

Nx−1∑
x=−(Nx−1)

Ny−1∑
y=−(Ny−1)

(Nx − |x|)(Ny − |y|)

×
x2 − y2

(x2 + y2)5/2
· (5)

At this point we exploit the fact that S ≡ 0 if Nx = Ny.
Therefore, we will write Nx = Ny + (Nx −Ny):

S =
1

2

∑
|x|,|y|≤(Ny−1)

(Ny − |x|)(Ny − |y|)
x2 − y2

(x2 + y2)5/2

+
1

2

|x|≤(Nx−1)∑
|x|>(Ny−1)

∑
|y|≤(Ny−1)

(Nx − |x|)(Ny − |y|)
x2 − y2

(x2 + y2)5/2

+
1

2
(Nx −Ny)

∑
|x|,|y|≤(Ny−1)

(Ny − |y|)
x2 − y2

(x2 + y2)5/2
·

The first sum vanishes, as seen by interchanging the
two dumb indices (x, y); in the third sum, for the same
reason we can get rid of the quantity proportional to
(Nx − Ny)Ny(x2 − y2)/(x2 + y2)5/2, whilst in the other
one the term y = 0 does not contribute. Finally, by using
the parity of the addenda, we obtain:

S =
Nx−1∑
x=Ny

Ny−1∑
y=−(Ny−1)

(Nx − x)(Ny − |y|)
x2 − y2

(x2 + y2)5/2

−(Nx −Ny)

Ny−1∑
y=1

Ny−1∑
x=−(Ny−1)

y
x2 − y2

(x2 + y2)5/2
· (6)

It is noteworthy that the previous expression is exact: its
use for a numerical calculation of S requires the evalua-
tion of 2NxNy terms, whilst equation (4) demanded N2

xN
2
y

terms!
The evaluation of S in the continuum approximation

(
∑
x,y →

∫ ∫
dxdy) is performed in Appendix A. Here we

will discuss the results. First of all, let us consider the
case of an infinite aspect ratio (r = Nx/Ny =∞ with Ny
finite). The quantity S per spin is (see Eq. (26)):

S

NxNy
=

2

3Ny
lnNy +

c1

Ny
· (7)



P. Politi and M.G. Pini: Shape anisotropy and magnetic domains in striped monolayers 477

Fig. 2. Shape anisotropy per spin, S/(NxNy), for a striped
monolayer with infinite aspect ratio (r = Nx/Ny = ∞), as
a function of Ny. Dots: exact numerical results, derived from
equations (28) and (37). Line: analytical approximation, equa-
tion (10).

An important feature of the previous expression immedi-
ately comes out: the shape anisotropy (per spin) vanishes
upon increasing Ny, even if Nx/Ny =∞! This means that
the shape anisotropy of an infinite stripe (Nx = ∞) be-
comes rapidly negligible, as Ny increases.

The numerical value of c1 cannot be determined by our
“zero-order” continuum approximation; in fact, the first-
order correction, given by the term in square brackets of
the Euler-MacLaurin summation formula (see Ref. [9]):

b∑
x=a

f(x) =

∫ b

a

dxf(x) +
1

2
[f(a) + f(b)] + . . . (8)

contributes just to the term of order (1/Ny) in (7). Since
the leading term (≈ (1/Ny) lnNy) dominates only loga-
rithmically, the constant cannot be neglected. In equa-
tion (7), c1 plays the role of the anisotropy for a single
line of spins:

c1 =
S

NxNy

∣∣∣∣
Ny=1

=
∞∑
l=1

1

l3
= ζ(3). (9)

So, we will rewrite (7) in the form:

S

NxNy
=

2

3Ny
lnNy +

ζ(3)

Ny
· (10)

In the limit Nx = ∞, the numerical calculation of S/Nx
can be made much more efficient by means of the Ewald’s
summation technique [10], which allows to rewrite S/Nx
as an exponentially converging sum. This is done in Ap-
pendix B. We are therefore able to compare (see Fig. 2)
the exact numerical result with the analytic approxima-
tion (10). Even our “zero-order” continuum approxima-
tion gives a fairly good approximation.

The following considerations are meant to corroborate
further on the previous results. If Nx =∞, we can exploit

the translational invariance in the x direction to write
down:

S

Nx
=

1

2

Ny∑
m,m′=1

∞∑
l=−∞

l2 − (m−m′)2

[l2 + (m−m′)2]
5/2

≡
1

2

Ny∑
m,m′=1

S(m−m′)

=
1

2
NyS(0) +

Ny−1∑
c=1

(Ny − c)S(c).

S(c) represents the “interaction” per unit length of two
lines at distance c, whilst S(0)/2 is the self-interaction of
a line. In the limit whereNy can be treated as a continuous
variable:

∂

∂Ny

(
S

Nx

)
=
S(0)

2
+

Ny∑
c=1

S(c)

∂2

∂N2
y

(
S

Nx

)
= S(Ny).

If the continuum approximation is applied also to the x
direction, for c 6= 0 we will have:

S(c) =

∫ +∞

−∞
dx

x2 − c2

(x2 + c2)5/2
= −

2

3c2
· (11)

So,
∂2

∂N2
y

(
S

Nx

)
= −

2

3N2
y

,

which gives

S

Nx
=

2

3
lnNy + c0Ny + c1. (12)

This expression would disagree with (7), if c0 were not
zero. It is zero, indeed. In fact:

c0 = lim
Ny→∞

∂

∂Ny

(
S

Nx

)
=
S(0)

2
+
∞∑
c=1

S(c)
(13)

and by writing down ( S
NxNy

) for a completely translation-

ally invariant two dimensional system, we obtain:

S

NxNy
=

1

2

∑
(m,l)6=(0,0)

l2 −m2

(l2 +m2)5/2
= 0

=
S(0)

2
+
∞∑
m=1

S(m) = c0.

Therefore c0 vanishes and equation (12) reduces to equa-
tion (7).

After having discussed the shape anisotropy of an
infinite stripe (Nx = ∞), upon increasing its “thick-
ness” Ny, now let us analyze the dependence of S/NxNy
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Fig. 3. Shape anisotropy per spin, S/(NxNy), for a striped
monolayer with fixed Ny = 40, as a function of the as-
pect ratio r = Nx/Ny. Dots: exact numerical results, equa-
tion (6). Dashed line: analytical approximation, equation (14)
with F (r) ≡ 1. Full line: asymptotic value (0.09153) of equa-
tion (14) for r →∞.

on the aspect ratio r. By handling the expression for S
NxNy

given in Appendix and by using the “boundary” condition
S

NxNy
(Nx =∞, Ny = 1) = ζ(3), we obtain:

S

NxNy
=

(
1−

1

r

)[
2

3Ny
lnNy +

ζ(3)

Ny
F (r)

]
,

(14)

where F (∞) = 1 and F (1) ≈ 1: the actual value of F (1) is
not really relevant, because the shape anisotropy vanishes
in the limit r = 1.

In Figure 3 we compare the previous expression (as a
function of r, keeping fixed the value of Ny = 40) with
the exact numerical result, obtained by exploiting equa-
tion (6). The behavior is well reproduced by the analytical
expression.

3 Domain structures in a striped monolayer

Now, let us turn to the study of domain structures
in striped monolayers. Our purpose is to check if – and
when – the appearance of magnetic domains is energeti-
cally favoured. We will consider a striped monolayer which
is infinite in the x direction (Nx = ∞) and we ask for
which values of the parameters, the creation of a domain
wall along the y axis makes the system gain energy with
respect to the collinear FM state.

We will consider two cases, according to the direction
of the magnetization: perpendicular to the striped mono-
layer, and in the plane, along the “hard” direction (y).
We consider just these two possibilities, because a striped
monolayer has a “double” shape anisotropy: it has an easy-
plane effect (as in a film, or in an infinite monolayer), but
in the plane, it has also an easy-axis effect, along the x
direction, which has been discussed in detail in the previ-
ous section. If the easy-plane effect is overcome by some
anisotropies (K⊥) oriented along z, the film will break
into domains. So, our first purpose (I) will be to study the
finite size effects on this domain structure.

Conversely, if the easy-plane effect of Edip prevails, the
magnetization will be oriented along x, or – in presence of

a sufficiently strong anisotropy K‖ favouring the y axis –
along the smaller size of the stripe. In analogy with (I), we
will expect that the striped monolayer breaks into in-plane
domains. We will analyze (II) this possibility, by showing
that domains don’t appear, except for very large values of
the dipolar coupling.

What we have to do – in cases (I) and (II) – is to create
a single domain wall along the y axis, and to compare the
domain wall energy, with the dipolar energy gain. In the
following, w will indicate the domain wall size. For an
evaluation of the dipolar term, in the Heisenberg model it
will be sufficient to consider Ising-like spins, with domains
separated by an empty region of size w [11].

In both cases (out-of-plane and in-plane domains) the
domain wall energy per unit length in the y direction,
will be written as Edw (for the Ising model: Edw = 2J ,
where J is the exchange coupling constant, and for the
Heisenberg model: Edw = 2

√
JK, where K = K⊥ in case

(I) and K = K‖ in case (II)).
I: out-of-plane domains. Because of the finite exten-

sion of the striped monolayer, the translational invariance
in the y direction is lost and the dipolar interaction be-
tween a given spin and the spins of a neighbouring domain
depends on the y coordinate of the spin. However, for the
evaluation of the order of magnitude of the dipolar energy
gain (per unit length), we can use the following approx-
imate formula1, where −Ω/[(x − x′)2 + y2]3/2 is nothing
but the dipolar interaction between two spins located in
(x′, 0) and (x, y), and pointing along ± z:

∆Edip (Ny)

≈ −2Ω

∫ 0

−∞
dx′
∫ Ny

0

dy

∫ ∞
w

dx

[(x− x′)2 + y2]3/2

≈ −2Ω

ln

Ny +
√
N2
y + w2

w


−

√
N2
y + w2 − w

Ny

 . (15)

In the limit Ny � w, ∆Edip ≈ −2Ω ln(2Ny/w). The FM
⊥ state will be destabilized if |∆Edip| > Edw, or

Ny >
w

2
exp

(
Edw

2Ω

)
. (16)

The explanation of this result is straightforward: out-of-
plane domains will appear only if the lateral dimensions
of the striped monolayer are larger than the size L that
domains would have in an infinite monolayer. In fact, the
right-hand side of equation (16) is exactly the typical size
of a domain in an infinite monolayer [12,13].

1 Indeed, it is possible to show that the dipolar energy gain
is in between ∆Edip(Ny) and 2∆Edip(Ny/2). Since ∆Edip de-
pends only logarithmically on Ny, the correction is not impor-
tant.
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II: in-plane domains, magnetized along ± y. In this
case, ∆Edip writes:

∆Edip ≈ −2Ω

∫ 0

−∞
dx′
∫ Ny

0

dy

∫ ∞
w

dx

×

[
1

[(x− x′)2 + y2]3/2
−

3y2

[(x− x′)2 + y2]5/2

]

≈ −2Ω

√
N2
y + w2 − w

Ny
, (17)

where the dipolar interaction

−Ω
{

1/[(x− x′)2 + y2]3/2 − 3y2/[(x− x′)2 + y2]5/2
}

between two spins located in (x′, 0) and (x, y) now has a
contribution from the anisotropic part (the second term
of equation (1)).

In the limit Ny � w, equation (17) simply writes:
∆Edip ≈ −2Ω. So, the dipolar energy gain does not in-
crease with Ny and therefore the condition for the appear-
ance of in-plane domains (|∆Edip| > Edw) can be fulfilled
only if Ω ≈ Edw, i.e. a rather large value.

4 Conclusions

Bulk systems differ substantially from two dimensional
ones, because shape effects are relevant in three dimen-
sions, but in-plane shape effects are negligible for stripes.
More precisely, if the magnetization lies in the plane, its
direction is mainly determined by existing magnetocrys-
talline anisotropies, because dipolar shape effects rapidly
vanish when the sizes of the stripe increase, even if the
aspect ratio goes to infinity. In particular, we have shown

that the shape anisotropy per spin vanishes as
lnNy
Ny

upon

increasing the size Ny, so that, e.g. for Ny = 40 (and
Nx = ∞) it is reduced by a factor larger than 10 with
respect to a single chain of spins (Ny = 1).

The extreme weakness of shape effects in stripes has
a further consequence on the existence of in-plane do-
mains: in fact, if the magnetization is forced in the y di-
rection (the “hard” direction with respect to the shape
anisotropy), in-plane domains with the magnetization al-
ternately directed along ± y appear only if Ω is fairly
large.

We remark that our analysis has assumed that the
striped magnetic monolayer considered has a microscopic
unit cell of square symmetry, so the theory is directly
applicable to epitaxial monolayers grown on (100) sub-
strates. In the case of the other high symmetry orientation
– the (111) one – the overlayer has a triangular symmetry
and no in-plane anisotropy is induced by the dipolar inter-
action, in the limit of an infinite monolayer. For striped
monolayers, our previous treatment should be relevant.
Conversely, for (110) substrates the microscopic unit cell
has a rectangular symmetry, which induces a further (and
possibly competitive) anisotropy in addition to the shape
anisotropy.

We acknowledge Danilo Pescia for having introduced us to the
problem of the striped monolayers.

Appendix A: Evaluation of S in the continuum
approximation

In the continuum approximation, equation (6) for S
rewrites:

S = 2I1 − 2(Nx −Ny)I2, (18)

where:

I1 =

∫ Nx−1

Ny

dx

∫ Ny−1

0

dy(NxNy

+xy −Nxy −Nyx)A(x, y)

I2 =

∫ Ny−1

0

dx

∫ Ny−1

1

dy yA(x, y)

A(x, y) =
x2 − y2

(x2 + y2)5/2
·

The following integrals are easily calculated [14]:

A(x1, x2, y1, y2) =

∫ x2

x1

dx

∫ y2

y1

dyA(x, y)

=
y2

1 − x
2
2

3y1x2

√
y2

1 + x2
2

+
x2

2 − y
2
2

3x2y2

√
x2

2 + y2
2

+[(x1, y1)↔ (x2, y2)] (19)

B(x1, x2, y1, y2) =

∫ x2

x1

dx

∫ y2

y1

dy xyA(x, y)

=
y2

1 − x
2
2

3
√
y2

1 + x2
2

+
x2

2 − y
2
2

3
√
x2

2 + y2
2

+[(x1, y1)↔ (x2, y2)] (20)

C(x1, x2, y1, y2) =

∫ x2

x1

dx

∫ y2

y1

dy xA(x, y)

=
1

3
ln

[
y1 +

√
y2

1 + x2
2

y1 +
√
y2

1 + x2
1

]

+
2y1

3
√
y2

1 + x2
2

−
2y1

3
√
y2

1 + x2
1

+[(x1, y1)↔ (x2, y2)] (21)

D(x1, x2, y1, y2) =

∫ x2

x1

dx

∫ y2

y1

dy yA(x, y)

= −C(y1, y2, x1, x2). (22)

In the previous expressions, [(x1, y1) ↔ (x2, y2)] means
that we have to interchange x1 with x2 and y1 with y2.
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After some lengthy, but easy, calculations it is found
that

I1 = NxNyA1 +B1 −NxD1 −NyC1, (23)

where

A1 =
N2
x −N

2
y

3NxNy
√
N2
x +N2

y

−

√
2

3N2
y

B1 =
N2
x −N

2
y

3
√
N2
x +N2

y

−

√
2

3
+
Ny −Nx

3

C1 =
1

3
ln

 Nx(1 +
√

2)

Ny +
√
N2
x +N2

y

+

√
2

3
−

2Ny

3
√
N2
x +N2

y

D1 =
1

3
ln

Nx +
√
N2
x +N2

y )

Nx(1 +
√

2)

− √2

3
+

2Nx

3
√
N2
x +N2

y

and

I2 =
1

3
ln

[
1 +
√

2

2Ny

]
−

2−
√

2

3
· (24)

As a function of the previous quantities, the shape
anisotropy per spin writes:

S

2NxNy
=

I1

NxNy
−
Nx −Ny
NxNy

I2

= A1 +
B1

rN2
y

−
D1

Ny
−

C1

rNy
−

(
1−

1

r

)
I2

Ny
·(25)

In the limit Nx →∞ it is immediately found that

S

NxNy
=

2

3Ny
lnNy +O

(
1

Ny

)
· (26)

Conversely, for any value of r = Nx/Ny we obtain the
following expression:

S

NxNy
=

(
1−

1

r

)[
2

3Ny
lnNy +

F ′(r)

Ny

]
,

(27)

where F ′(r) is a function which depends only very weakly
on the aspect ratio r: F ′(1) ≈ F ′(∞) ≈ 1. Indeed, the
term proportional to F ′(r) corresponds to the term of
order (1/Ny) in (26): i.e. a term which cannot be de-
termined consistently by the used “zero-order” contin-
uum approximation. Imposing the “boundary condition”
S

NxNy

∣∣∣
r=∞,Ny=1

= ζ(3), corresponds to put F ′(r) =

ζ(3)F (r), with F (∞) = 1 and F (1) ' 1.

Appendix B: Exact calculation of S for
Nx =∞

Let us consider the case of a stripe with an infinite as-
pect ratio r = Nx/Ny = ∞, i.e. with Nx = ∞ and finite

Ny. Since in this limit translation invariance is restored
along the x direction, it turns out that the summation in
equation (4) can be rewritten

S

Nx
=

1

2

Ny∑
m,m′=1

∞∑
l=−∞

l2 − (m−m′)2

[l2 + (m−m′)2]
5/2

=
1

2
NyS(0) +

Ny−1∑
c=1

(Ny − c)S(c) (28)

where S(c), the interaction per unit length of two lines at
a distance c, is

S(c) =
∞∑

l=−∞

l2 − c2

(l2 + c2)5/2

=
∞∑

l=−∞

1

(l2 + c2)3/2
− 2

∞∑
l=−∞

c2

(l2 + c2)5/2
· (29)

The self-interaction of a line, S(0), is readily evaluated in
terms of the Riemann’s zeta function ζ(x)

S(0) =
∞∑

l=−∞

1

|l|3

= 2
∞∑
l=1

1

l3
= 2ζ(3) = 2× 1.202057. (30)

To evaluate S(c) for c > 0 we use a method which was
developed by Ewald [10] for converting two-dimensional
dipole sums to a rapidly converging form. First we take
into account the identity [14]:

1

αν
=

1

Γ (ν)

∫ ∞
0

dt tν−1 e−αt (31)

to rewrite S(c) as follows

S(c) =
1

Γ (3/2)

∞∑
l=−∞

∫ ∞
0

dt t1/2 e−(l2+c2)t

−2c2
1

Γ (5/2)

∞∑
l=−∞

∫ ∞
0

dt t3/2 e−(l2+c2)t. (32)

Next we employ the identity

∞∑
l=−∞

e−l
2t =

√
πt−1/2

∞∑
n=−∞

e−(πn)2/t (33)

so that

S(c) =
∞∑

n=−∞

∫ ∞
0

dt e−c
2t e−(πn)2/t

×

[ √
π

Γ (3/2)
− 2c2

√
π

Γ (5/2)
t

]
. (34)



P. Politi and M.G. Pini: Shape anisotropy and magnetic domains in striped monolayers 481

The integrals can be exactly evaluated in terms of the
modified Bessel functions Kν(x) [14]:∫ ∞

0

dt e−at e−b/t tν−1

= 2

(
b

a

)ν/2
Kν(2

√
ab) (a, b > 0). (35)

At last we obtain, for c ≥ 1:

S(c) =
4π

c

∞∑
n=−∞

|n| K1(2πc|n|)

−
16π2

3

∞∑
n=−∞

n2 K2(2πc|n|). (36)

At this point we take into account the x→ 0 expansion [9]

Kν(x) ' 1
2Γ (ν)(1

2x)−ν , so that the n = 0 terms in the
summation are found to give the finite contributions

lim
n→0

nK1(2πcn) =
1

2πc

lim
n→0

n2K2(2πcn) =
1

2π2c2

and finally we obtain for c ≥ 1

S(c) = −
2

3c2
+

8π

c

∞∑
n=1

n K1(2πcn)

−
32π2

3

∞∑
n=1

n2 K2(2πcn). (37)

The first term on the r.h.s. gives the main contribution,
which coincides with the result of the continuum limit.

The two n−summations converge very rapidly because the
Bessel functions present an exponential decay for high val-
ues of their argument: Kν(x) '

√
π
2xe
−x[1+ 1

8x(4ν2−1)+

O( 1
x2 )] for x → ∞. In practice, excellent convergence is

obtained summing about ten terms.
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